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Thin coating flows inside a rotating circular cylinder are investigated when the axis 
of rotation is perpendicular to the direction of gravity. Attention is restricted to flows 
of power-law fluids having negligible inertia. Four distinct steady-state liquid-film 
profiles are found to be possible. Two of the cases correspond to a continuous coating, 
i.e. films that cover the entire inner surface of the cylinder. The other two cases 
involve partial films covering a limited portion of the cylinder surface. Of the two 
continuous films, one is the expected configuration involving a coating that 
gradually changes in thickness as one moves around the cylinder, the film being 
thicker on the ascending portion of the cylinder and thinner on the descending 
portion. The second continuous-film configuration has regions on the rising side of 
cylinder where a rapid change in depth is possible. This case also has the potential 
to have recirculating zones where a portion of the fluid is trapped in either one or two 
eddies a t  fixed locations on the rising side of the cylinder. Of the two partial films, 
one corresponds to a weakly deformed puddle at the bottom of the cylinder and is 
the appropriate solution a t  small rotation rates. The second partial film is a film 
which coats a portion of the ascending side of the cylinder, the extent of which 
depends on the film volume. 

1. Introduction 
Steady-state coating flows inside a rotating horizontal drum are considered. 

Coating flows are among an important class of fiows commonly found in 
manufacturing. The case considered here is of particular interest in rotational 
moulding, some pipe-coating processes and in the manufacture of pipes and columns 
from molten metals and cements. The special case of a continuous coating inside a 
rotating circular cylinder, sometimes referred to as a rimming flow, has been studied 
by Ruschak & Scriven (1976), Deiber & Cerro (1976) and Orr & Xcriven (1978). In 
addition to restricting their attention to the case when the coating completely covers 
the inner surface of the cylinder, each of these papers also restrict attention to 
Newtonian fluids. Ruschak & Xcriven consider the limiting case when the motion of 
the liquid is a small perturbation from a rigid-body motion and they consider both 
large and small Reynolds-number limits of their solution. Deiber & Cerro solve the 
corresponding boundary-layer equations numerically using a streamline coordinate 
system, and Orr & Scriven present results from a finite-element numerical simulation 
of the rimming flow including surface-tension effects. Deiber & Cerro speculated on 
the existence of discontinuous solutions when their numerical scheme failed to 
converge. The present paper, for the first time, cleasly identifies some of these 
discontinuous solutions. Deiber & Cerro also briefly considered the low-Reynolds- 
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FIGURE 1. Sketch of four possible steady-state film configurations. 

number limit for the case of a Newtonian fluid, but they derived an erroneous 
equation for the coating thickness and as a result they did not identify some of the 
many interesting film profiles and other features that will be described later. Other 
background information about flow inside rotating cylinders, not directly relevant to 
the present paper, can be found in Karweit & Corrsin (1975), Balmer (1970), Debler 
& Yih (1962), Phillips (1960), White (1956) and White & Higgins (1958). In  addition, 
the present work has a great deal in common with the general subject of exterior 
coating flows for which there is a vast literature and the reader is referred to the 
review article by Ruschak (1985). 

Here we consider the limit ofa  thin liquid coating using the well-known lubrication 
approximation. We do not restrict attention to Newtonian fluids or to rimming flows 
alone, but we consider power-law fluids and also investigate partial coatings. In fact, 
four distinct steady-state film configurations are identified, two of which only 
partially coat the cylinder surface and the other two, called continuous films or 
rimming flows, cover the entire cylinder surface. A rough sketch of typical examples 
for each of the four configurations is shown in figure 1;  other variations will be 
discussed later. 

Of the two partial films one corresponds to the appropriate solution valid for small 
rotation rates and not surprisingly the liquid or charge remains in a slightly 
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perturbed puddle a t  the bottom of the cylinder (e.g. figure l a ) .  This limit is not 
particularly interesting in terms of material processing and hence i t  shall not be 
explored in detail. The other partial film configuration consists of a film located on 
the ascending side of the rotating cylinder (e.g. figure 1 b )  and it is found to be a 
possible steady-state solution for a limited range of liquid volumes. For this case the 
portion of the cylinder surface covered by the film is a function of the liquid volume 
and the maximum possible volume corresponds to a film extending from the top 
(8 = 7c) to the bottom (8 = 0) of the cylinder along the rising side. 

New results for rimming flows which have not been reported elsewhere are also 
presented. One interesting feature of rimming flows is the presence of two possible 
configurations. The first of these involves the somewhat expected situation of a 
coating that gradually changes in thickness around the cylinder (e.g. figure 1 c ) .  This 
film is deeper on the ascending side of the cylinder and shallower on the descending 
side. The second case in this category is a film that has one or two rapid transitions 
in depth on the rising side of the cylinder and can have recirculating eddies present 
(e.g. figure ld) .  

2. Analysis 
Since many of the most interesting features of the flow to be discussed are 

exhibited by Newtonian fluids and since the presentation is particularly simple in 
this case, we will begin by considering this case first. The extension to power-law 
fluids will be presented later. We consider a horizontal circular cylinder of inside 
radius R which rotates a t  a constant angular velocity SZ abou: its axis as shown 
in figure 1. The thickness of the fluid coating is taken to be h(8),  where 8 is the 
azimuthal coordinate, with the bottom of the cylinder being at  8 = 0 and 8 increasing 
in a counterclockwise sense. It is convenient to express the radial coordinates as 
3 = R - i ,  where ii is a new radial coordinate measured from the inner wall of the 
cylinder (a caret denotes dimensional quantities). Making the assumption that the 
fluid coating is thin amounts to requiring the parameter 6 = h,/R to be much less 
than unity, where h, is the characteristic thickness of the film. Naturally, the 
thinness assumption is equivalent to assuming that the volume of the charge in the 
rotating mould is small. We introduce dimensionless velocities in the radial and 
azimuthal directions : 

U, = &,/6SZR, ue = Zie/!2R, 

and the scale the radial coordinate i: by the cylinder radius R and the coordinate ii 
by ha, i.e. 

The normal stresses, pressure and deviatoric stresses are made dimensionless by 

r = 3/R = l-ii/R = l-an, n = &/ha. 

r r r  = + r r / ( P Q / a ) >  Tee = +se/(@/S), P = $/(PQ/6)> aij = Sif l (PQI4,  
where ?ij = gkL 6, + S,, and ,u is the dynamic viscosity of the fluid. Consequently, 
assuming that the Froude number (Q2R/g); is small and therefore neglecting inertial 
effects the governing equations become 
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and conservation of mass for an incompressible fluid is 

au, s i au, +- u,+-- = 0. -_ 
an 1--6n l-Sn a0 (3) 

Note that we have used r,,-r,, = 2s,, in (1) and we define 

r = PpgR/pQ,  (4) 

where r-l is a product of the square of the Froude number and an Ekman number 
based on the film thickness, i.e. p/pQhi .  

For the Newtonian fluid the material behaviour is given in dimensional quantities 

by 
tii = 2pt?,,, 

where iij is the strain rate and 6,, is the deviatoric stress, and we find the 
dimensionless constitutive equations to be 

Note that the somewhat unconventional formulation involving the stresses is not 
typically used for Newtonian fluids, but it will make the extension to power-law 
fluids straightforward. 

We consider r= O(1) and retain the leading terms for small 6 in (l), (2) and 
(3) : 

w rCOSe, 
an 

(note that 0(8)-terms in (9) have been retained for later use when we examine 
transition solutions in regions where the film thickness changes rapidly). At leading 
order the constitutive equations become 

and we see that a t  leading order the longitudinal deviatoric stresses vanish. This is 
the standard result of lubrication theory, namely, that the flow is dominated by 
shear stresses and pressure. From (8) we find 

r,, =: cos B[n- h(O)], 
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where we have applied the normal stress boundary condition T,, z 0 on the free 
surface n = h(0) (note that this is the leading-order boundary condition on the 
normal stress for small 8). We have neglected surface tension and any dynamical 
effect of the gas in the cylinder above the free surface. Furthermore, using (11)  we 
have T,, = r0,+2s,, = T,,, and (9) becomes 

-- aTrr ”“ 26s,, z S--rsinO = - f  
an ae 

Letting s,,, = 8:;) + 6s:;) + . . . and substituting in the above we can readily evaluate the 
first- and second-order terms in the shear stress. On the free surface n = h(0) the 
shear stress vanishes and therefore we apply the condition s,, z 0 to ultimately 
find 

[1+$6(n-h)] 

Substituting the expression for the shear stress into ( 7 )  gives 

a% 
--+&?A,, = q n -  
an 

which may be integrated to find the azimuthal velocity u,. After obtaining u, from 
(15) using the condition u, = 1 on n = 0, the mass conservation equation (10) then 
determines the radial component of velocity using the condition that u, = 0 on 
n = 0. The details of this calculation are not important for the present discussion so 
they will be omitted for the sake of brevity. 

Lastly, integrating the equation of mass conservation across the film from n = 0 
to h and applying the condition u,(n = 0) = 0 and that the normal component of 
velocity vanishes on the free surface, i.e. u,+u,dh/dO z 0 on n = h(O), gives the 
equation 

This states that the volume flow rate per unit length, q ,  is conserved for a steady- 
state film, i.e. 

q = s,”” u0 dn = const. 

This equation determines the film profile h(0). For a Newtonian fluid the expressions 
for uH and q are 

u,, = 1 - 6 n - r  n(h-$z)-6n($h2-nh+$z2) sin6 

q = h-;Sh2-$fh3 

2.1. Continuous $films - Newtonian Jluids 

For a continuous film covering the entire surface, we determine the profile of the film 
h(0) from (17) and (19). Neglecting terms of O(6) we have 

q = h-$fh3 sin0 = const = h(0). (20) 
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FIGURE 2. Sketch of the function H = ( l / h 2 ) [ 1 - h ( O ) / h ]  versus l / h  (see equation ( 2 2 ) ) .  Note that 
for a Newtonian fluid H,,, = 4/[27h2(0)]  and recall that  h(0)  is given implicitly by sin0 = H(h-') .  
The general shape of the curve H(h-') is similar for power-law fluids. 

Now recall that r = PpgR/,uQ, where 6 = h,/R and that we have not yet specified 
the characteristic film thickness h, precisely. Consequently it is convenient here to  
choose h, such that $r = 1, i.e. a2 = 3pQ/pgR and therefore h, = (S,uQ/pgR);R. We 
therefore wish to solve for h(8) from 

h-h3 sin8 = h(0). 
It is useful to write this as 

s i n 8 = -  L2 [ I--  " ) I  =H(h-'), (22)  

and examine the right-hand side versus l l h ,  which is sketched in figure 2. For 
0 < 0 < 2x the left-hand side of ( 2 2 )  is between - 1 and + 1. Therefore, in order to 
have a positive real solution for h(8) for all 8 between 0 and 2x, i.e. a continuous film, 
H(h- ' ) ,  must extend from + 1 to - 1 (this situation is shown in figure 2). However, 
H(h-') has a maximum value H,,, = 4 / [ 2 7 h 2 ( 0 ) ]  a t  h = $h(O) and therefore we see 
that a continuous film is only possible if H,,, >, 1, or equivalently if h ( O )  < 2/38. If this 
is not the case then we do not have a real, positive solution for h(0) in a region 
bordering around 8 = in. 

Limiting our attention for the moment to continuous films and therefore assuming 
that we have h ( 0 )  < 3/32 ( ix .  H,,, 2 I ) ,  we can see from figure 2 that (22) has two 
positive, real roots h(8) for 0 ,< 8 < x(0 < H 6 1) and only one positive real root for 
x < 8 6 2x( - 1 < H < 0). Consequently, (21) predicts two rather distinct steady- 
state continuous-film configurations and the two cases have markedly different film 
profiles on the rising side of the cylinder between 8 = 0 and x. The two thicknesses 
predicted on the rising side of the cylinder are analogous to the two solutions found 
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FIGURE 3. Locus of points h(8) which represent a continuous film or rimming flow as shown in 
the sketch in figure 1 (c) (see text for discussion). 

in dip coating or free-withdrawal coating in which a solid surface is withdrawn from 
a reservoir (Ruschak 1985; Van Rossum 1958; Tuck 1983). In  dip coating on 
a vertical surface it is generally believed that the coating thickness corresponds 
to the film with the greatest volume flux, in which case the two solutions coincide 
(in the present notation this corresponds to sin8 = 1 ,  H,,, = 1,  q = h(0) = 2/3% and 
h = 1 / 4 3 ) .  Here, however, we show how the two distinct depths can be used to 
construct interesting steady-state flows involving rapid changes in depth. 

Of the two continuous film types, the first and somewhat expected continuous film 
profile is a gently varying profile (e.g. figure l c )  and can be obtained from the 
solution path for increasing 8 shown by the arrows in figure 3. In figure 3 we begin 
at  point a where the curve H(h-l) crosses the l /h  axis where 0 = 0, (H = 0) and 
h = h(0) .  As we proceed from point a to 6 ,  8 increases and the film thickens 
( l /h  decreases) and a maximum thickness h(8) is reached a t  point b where 6' = fn 
(H = 1 ) .  Then from point b' to c' the film thins as 8 increases and a t  c' we have 
8 = in  (H = - 1 )  and h(8)  is a minimum. Prom point c to a or equivalently from 8 = $ 
to 271. the film thickens and returns to its original value h(0) .  A few specific examples 
of the resulting film profiles for various values of h(0) are shown in figure 4. As h(0) 
increases, the variation in the film thickness increases owing to the increasing 
influence of the gravity force. Note that the thickest film shown corresponds to the 
solution when h(0) equals its maximum value 2/3% = 0.385. 

A second and somewhat unexpected continuous-film configuration predicted by 
(21) would result from a solution path such as that shown by the arrows in figure 5 ;  
namely, as 0 increases from 0 at point a ,  h(0) would be increasing and then at some 
8 = 0* 6 fn (point 6 )  the film thickness would jump rather suddenly in depth from 
h, (at point b )  to h, (at point c ) .  The film would then thin as 8 increased to in (point 
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FIGURE 5.  Locus of points h(0)  which describe a continuous film having 
shown in the sketch in figure 1 (d ) .  

two rapid transitions as 

d )  and then would increase in thickness for in < 19 < 7c-P. At point c' where 
6 = n - 6' the film would suddenly thin from h, to h, (from c' to b') and it would con- 
tinue to thin more gradually as 6' increased to $E a t  point e'. Lastly, from 6 = $n 
(point e )  to 8 = 2n (point a )  the film would thicken and return to its starting value 
h(0). A sketch of this general situation is shown in figure 1 ( d ) .  The sudden transitions 
predicted in this case are, of course, regions of non-uniformity of the present solution. 
The transition is not a sudden jump in thickness but a rapid smooth transition 
between the two depths. This transition can be evaluated by returning to (19) and 
reinstating the term Qdh/d6' which is not negligible in these transition regions since 
dh/d6 becomes large. As will be seen below, this thick region near 6 = in is often a 
recirculating zone of trapped fluid and fluid moving with the rotating cylinder is 
passing underneath this thick zone. The solution described above is only one of a 
number of possible cases, many of which will be described later. Lastly, the films 
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FIGURE 6. Structure of the rapid transition, i.e. h versus X ,  for O* x in : ---, h(0) = 0.35; 
-, 0.30. 

involving a rapid change in depth found here are somewhat reminiscent of the films 
involving a change in depth found in jet-stripping by Tuck (1983). 

The precise structure of the transition regions is easily illustrated for the case of 
a Newtonian fluid whereby we must return to (19) and consider 

h2 

If a transition point is present a t  8 = 8*, then after introducing the inner variable 
X = (8-8*)/8 the equation for the transition or inner solution becomes 

Since H(h-l) - sin 8* 2 0 for h, < h < h, (see figure 5 )  we see that for 0 < O* < in (i.e. 
cos8* positive), dh/dX is positive and therefore (24) describes a film increasing in 
thickness. For +R < 8" < R, dh/dX is negative and (24) describes a thinning 
transition which is simply the mirror image of the transition for 0 < 8* < in. 
Furthermore, the solution to (24) will match to the outer solution. For 0 < O* < in, 
a s X +  -a we have dh/dX+O and h+h, and as X+ +a, dh/dX+O and h+h2. 
Similarly, for < 8" < R, dh/dX + 0 and h + h, > h, as X + - GO, and dh/dX + 0 
and h+h, as X +  + GO. Equation (24) is easily integrated numerically and two 
typical examples of the transition solution are shown in figure 6. Note that as h(0) 
decreases the initial increase in depth is very rapid compared with the more gentle 
approach to h, as X + co. This region of high curvature is surely a region where 
surface-tension effects would become important, tending to smooth out the transition 
somewhat. However, we have not considered surfaee-tension effects in the present 
work. In figure 7 the overall film profile for 0 < 8 < 271 is plotted for a few typical 
cases, i.e. the uniformly valid solution h(8) obtained from (24) and (21) is plotted 
for 8* x :R, and h(0) = 0.30, 0.28 and 0.25. The dotted lines in these figures denote 
a recirculating zone which is discussed below. 
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a 
FIGURE 7.  Typical Newtonian fluid film profiles, h(O) versus 0, for films having two transitions 
located symmetrically about 0 = in (0* = in): (a )  h(0) = 0.30; ( b )  0.28; (c) 0.25. The dotted line 
denotes the streamline bounding the recirculating zones in each case. 

Another interesting feature of the continuous-film solution is obtained by 
examining (18) for uO. Clearly, for 0 < 8 < n the azimuthal velocity uo has the 
potential to change sign, that  is, a recirculating zone is possible on the rising side of 
the rotating cylinder. The presence of a recirculating zone is easily identified by 
determining the stagnation points on the surface n = h(0) ,  i.e. 

uO(n = h, 0) = 0 = 1 --% sin Oh2, (25)  

recalling that we chose $r= 1 and noting that O(S)-terms have been neglected. 
Equation (25) can only vanish for 0 < 8 d n and the stagnation points 0 = 8, are 
given by 

h2(0,) sin 8, = $. 

qe,) = 3qo). (27 1 

(26) 

Substituting this in (21) for h(8) we find 
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2 
sin0, = ~ 

27h2(0). 

Therefore, two recirculating zones are present and positioned symmetrically about 
0 = $ 7 ~  when 2/27h2(0) d 1 or equivalently when 

Note that the stagnation points move towards 0 = in as h(0)  approaches the 
minimum value given in (28). 

Now, recall that the function H(h-l)  has a maximum a t  h = $h(O) (see figure 2)  and 
therefore the continuous-film solutions which do not have jumps correspond to 
values of h(0) that satisfy h(0)  < ih(0)  for all 0. Consequently, since the stagnation 
points are located a t  h(0,) = 3h(0) which is greater than @ ( O ) ,  clearly the presence of 
recirculating zones is restricted to films having rapid transitions or jumps. However, 
recirculating zones are not always present, but will occur only when the greater of the 
two depths a t  the transition point 0 = 0*, i.e. h,, is greater than h(0,) = 3h(0) given 
by (27) ; otherwise there is a jump but no recirculation zones. Furthermore, when 
jumps are present and h(0) is less than the minimum value given in (28) we find that 
a single large recirculation zone is present which extends between the two jumps. The 
separating streamlines shown in figure 7 are easily evaluated by computing the 
volume flow rate between the cylinder wall n = 0 and a position n = n,(0), and 
requiring that this flow rate equal the flow rate through the film between n and 27~, 
i.e. q(0) = h(O), 

giving 

This equation is easily solved for n, using Newton's method. From figure 7 we see 
that the thick regions are often trapped recirculating zones which are underrun by 
fluid being dragged along by the rotating cylinder. 

Lastly, note that the actual number of possible film configurations involving rapid 
transitions are limitless. In  the preceding discussion we examined two transitions 
located symmetrically about 0 = ; however, any conceivable non-symmetric 
configuration is also possible so that the film profile on the rising side of the cylinder 
need not be symmetric. In  figure 7 we have only attempted to  illustrate one of many 
possible film configurations. Other possible configurations (e.g. figure 11) will be 
described in $3.  

2.2. Partial films - Newtonian JEuids 

For a film of limited extent (e.g. figure 1 b )  clearly the volume flux must vanish and 
so the equation for h(0)  becomes 

q = h-$I'h3 sin0 = 0. 
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FIGURE 8. Typical partial film profiles for a Newtonian fluid : -, 8, = :K ; . . . , $K ; --- an. 
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Once again it is sensible to choose h, such that $r = 1 and we have a positive, real 
solution for h only for 0 < 8 < 7~ and hence 

However, this solution does not satisfy the required condition on a partial film, 
namely, that h = 0 at specified locations. Therefore, we need to incorporate 
transition solutions which describe the edges of the film. This, once again, requires 
reinstating the term Sdh/d8 in (19) and we must consider 

(30) 

giving (note $r= 1) 

dh 
d8 

S cos0h2-+h2 sin0 = 1. 

Suppose the contact line where the film vanishes is located a t  8 = 8,, then let 
X = (0-8,)/6 and consider 

giving 

dh 
dx cos8,h2-+h2 sine, = 1, 

Naturally, as h+ (l/sin B,);, i.e. the inner limit of the outer solution equation (29), we 
find from (33) that X + + 00 as required. For a Newtonian fluid we can evaluate (33) 
explicitly as 

0 = 0,+cot0,{ -h+--,ln[ 1 
1 + h  sinto, ]} 
1 - h sina 0, 2 sin2 0, (34) 

A few typical film profiles obtained from (34) and (29) are shown in figure 8 for 
+n < 6’ < TC (note that the film must straddle 8 = +TC and only part of the film is 
shown). As we approach the contact line we see from (32) that, as X - t  0, 

h K X i ,  
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and dh 
dx 
-KXx-Loo, 

and the end of the film is very blunt. Note that if we wanted to satisfy a prescribed 
contact-angle condition, it would be necessary to return to the original formulation 
and include surface-tension effects. In  reality a further non-uniformity exists in the 
solution and very close to the contact line surface-tension effects play an important 
role, For a survey of the many papers that have dealt with this issue, particularly for 
Newtonian fluids, see Davis (1983). 

A second partial-film configuration exists which corresponds to the appropriate 
solution for small rotation rates SZ. I n  this case it is not desirable to choose the 
characteristic thickness h, such that gr = 1 (where r = S2pgR/pSZ). Instead we wish 
to examine the solution for Sa small and therefore r 3- 1. Consequently, retaining the 
leading-order terms for large r in (30) we have 

This leading-order equation describes a static film, and higher-order corrections 
begin to account for the weak rotation of the cylinder. Basically the situation 
consists of a perturbed puddle a t  the bottom of the cylinder. The static-film solution 
obtained from (35) is given by 

h = h(0) + 6-' In (cos #), (36) 

where it is appropriate to take the characteristic film thickness h, = i (0)  so that 
h(0) = i(O)/h,  = 1 and, in order to have a thin film, clearly the extent of the film 
must be small, i.e. # = O(b). For 0 small, we then have 

(37) 

and the contact line is located a t  8, z (26);+. . . . Higher-order corrections in 
accounting for the motion are easily obtained, but they are not very interesting 
physically so we shall not discuss them further. Note that for small SZ i t  is also 
possible to construct the perturbation solution when the film is not thin; the merit 
in doing this, however, is not clear. 

Along the same lines, it is also not appropriate to take gr = 1 when SZ is large. In  
this case we can consider r< 1 and develop a perturbation solution to (20) which 
describes a rimming flow, 

E, 1 -43-1e2 2 +... 

h x h(0)+$Th3(0)  s inB+0(r2) ,  (38) 

and hence the film thickness h(8) in this case is nearly constant. This is a near rigid- 
body rotation and falls among the class of rimming flows considered by Rushak & 
Scriven (1976). 

2.3. Extension to power-law fluids 

The power-law description of the material behaviour that replaces the Newtonian 
behaviour is given in dimensional quantities by 

where 'i2 = isij&, and B and m are material parameters (rn 2 1) .  Naturally m = 1 
corresponds to the Newtonian-fluid case where B-l = 2p. Making the deviatoric 
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stresses dimensionless as before, we find the dimensionless constitutive equations to 
be 

where the viscosity p used in the non-dimensionalization is an effective viscosity 
given by 

= ;(i)l-l'm_ 1 
B l / m  ' 

Owing to incompressibility note that s,, = -so, and therefore r2 = s&+s&. 

now 
At this point the analysis proceeds exactly as before with the one exception that 

and since the longitudinal deviatoric stresses vanish at leading order we have 
r2 z s$. The shear stress is unchanged and given again by (14). Substituting the 
expression for shear stress into (42) gives an equation for the azimuthal velocity 

$S(h-n)] (43) 

As before the radial component of velocity is determined from mass conservation. 
For arbitrary values of m the integration of (43) for ug is somewhat cumbersome, 

however, for small 8, (43) can be approximated by 

= rlsr,lm-1(n-h(O)) sine = r 7 n  sgn (sinO);sinm81 (h-n)m, (44) an 

where sgn (sin 8)  is + 1 or - 1 depending on the sign of sin 0. 
Consequently, we find that 

r m  
u, = 1 -__ sgn (sin@ [sin"O[ [hm+l-(h-n)m+l], 

m+l (45) 

(46) 

2.4. Continuous Jilms - power-law Jluids 
For a continuous film covering the entire surface, we now have 

sgn (sin 19) /sinm 01 = const = h(0). (47) 
q = h-- rm h"+2 

m + 2  

Consequently, i t  is convenient here to choose h, such that T m / m + 2  = 1, i.e. 

8l+l/m = 1 
2 " m  + 2) QIBI1'"lPgR 
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and therefore 

and we determine h(6) from 

h-- l~"+~ sgn(sin6) Isin"01 = h(O), 

or 

From this point on the discussion follows closely that for a Newtonian fluid and the 
reader is referred to  92.1 for a complete discussion. Since the general shape for 
H(h-l) is essentially unchanged from that shown in the sketch in figure 2 the 
preceding discussion applies here and we shall only note the main differences between 
a power-law fluid and a Newtonian fluid. In  the present case H(h-') has a maximum 
value, 

and therefore a continuous film is only possible if H,,, 2 1,  or equivalently if 

Once again, (48) predicts two very different steady-state continuous-film con- 
figurations : one that gradually varies around the perimeter of the cylinder (see figure 
3 and the discussion in 92.1) and one that rapidly changes in depth (see figure 5 ) .  
Results for the film profiles of gradually varied continuous films are compared in 
figure 9 for m = 1 (Newtonian), 3 and 10. I n  each case the thickest film shown for 
each m corresponds to the maximum value of h(0) noted in (50). Note that as m 
increases, variations in the film thickness decrease because velocity variations across 
the film are decreasing. In fact, as m + 00 the material behaves as a perfectly plastic 
material which would yield at  the cylinder wall and flow as a slug with ug z 1 .  I n  the 
case when jumps are present, the character of the film is similar to  what was found 
for the Newtonian case and local transition solutions can also be constructed in the 
neighbourhood of the jumps. 

Recirculating zones are also inherent in the solution in this case and, as we found 
before, they are present only when the film has rapid transition regions. The presence 
of two recirculating zones is identified by locating the stagnation points on the film 
surface where us(h, 6 )  = 0. These locations are found for a power-law fluid to be given 
by 

46 , )  = (m + 2) N O ) ,  

and 

Consequently, two recirculating zones are present when 

As before, the recirculating zones are present only when the larger of the two depths 
a t  the transition point (h,) is greater than the stagnation-point depth h(6,) ; otherwise 
a jump could be present but no recirculating zones would be found. When h(0) is less 
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0 1.57 3.14 4.71 6.28 

B 

FIGURE 9. Continuous film profiles : h(0) versus 0. (a)  m = 1 (Newtonian fluid) : -, h(0) = 0.38 ; 
__ , 0.35; . .  ., 0.30; ---, 0.25. (b )  m = 3: -, h(0) = 0.53; --, 0.50; . .  ., 0.45; ---, 0.40. (c) 
m = 10: -, h(0) = 0.73; . .  . ,  0.70; ---, 0.65. 

than the minimum value in (52) a single large recirculating zone stretches between 
the two jumps. Lastly, the separating streamline for the recirculating regions is given 
for a power-law fluid by 

h(0)  = n,-- m+ sgn (sin 0)  lsinm el hm+2 [""- (1 -3) +L (1 -?r+2]. 
m S  1 m f 2  h m+2 

2.5. Partial jilm - power-law $fluids 
For a film of limited extent, the equation for h(0) becomes 

q = h-hmf2 sgn (sin 0) Jsinm 81 = 0. (53) 

Consequently, a positive, real solution for h exists for 0 < b' < n and is given by 

h =  (sia - H)""""'. (54) 
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Once again, the term Gdh/dB in (43) must be reinstated in order to satisfy h = 0 a t  
the film edges. Consequently, we must consider 

giving 
dh 
d8 

6 cos 8h1+'lm - + sin 8h1+1/m = 1. (55)  

Assuming that the film vanishes a t  8 = 8, and introducing X = (8-8,)/S in (55) we 
find 

As we approach the contact line, i.e. X + 0, we have 

dh h cc x m / ( z m + l )  - ~ - ( m + l ) l ( z m + l )  
' d x  

and therefore as m increases, h vanishes more quickly and the film is not as blunt. 
The remaining results analogous to those found for a Newtonian fluid are the 

results for small and large rotation rates. For small rotation rates D and therefore 
r % 1,  we now have 

, 

(57) 

The leading-order solution to (57) corresponds to a static film and naturally is 
independent of m and therefore identical with (36) found for a Newtonian fluid. 
When D is large, the rimming-flow solution analogous to (38) is 

r m  
h = h(0) +---h(0)m+z sgn (sin 0) [sinm 01 + O ( P m ) .  

m+2 

3. Discussion 
One important question remains, namely, under what conditions do the various 

steady-state film configurations occur 1 This question seems particularly interesting 
since the occurrence of continuous films that have sudden transitions or partial films 
on the rising side of the cylinder seem contrary to one's intuition. Unfortunately, the 
present work does not put us in a position to answer this question. In  fact the answer 
surely requires investigating film stability and the initial-value problem (both of 
which are presently being pursued). However, a few comments and some speculation 
seem appropriate a t  this point. 

The first comment regards the fact that there are limitations on the fluid volume 
for the various film configurations. For a gently varying continuous film (e.g. figure 
1 c) recall that we found that such a film configuration was possible provided 
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1 l h  
FIGURE 10. Locus of points h(0)  which describe a film having a single rapid transition 

(h (0 )  = (m+ t)/(m+2)(m+2)l(m+1); see text for discussion). 

This limitation naturally translates into a restriction on the film volume. For 
example, for m = 1 a gently varying continuous film is possible for h(0) d 0.3849 and 
therefore the film volume, 

1' = 6R2 Jr h(B) do, 

must be less than or equal to 2.566R2 (where 6 = [3,uQ/pgR]i and the value 2.56 is the 
integral of h(B) when h(0) = 0.3849). Consequently, gently varying continuous films 
might be the steady-state shape for fluid volumes less than this maximum. However, 
what configuration would occur for films having a greater volume than this 
maximum ? Are continuous films with sudden transitions possible for greater 
volumes ? 

Consider the following thought experiment. Suppose that into a rotating cylinder 
we are slowly adding fluid in increments so that the film reaches a steady state for 
each volume increment. If each of these steady states corresponds to a gently varying 
continuous film then when the film volume first reaches its maximum value 
(corresponding to the maximum value of h(0))  perhaps a film having a sudden 
transition is born with the transition initially located near 0 = f ~ .  As the volume is 
increased further the transition point would move upstream towards 0 = 0, but h(0) 
might remain unchanged. A film profile of this type is described by the path of the 
arrows shown in figure 10. This case is possible when h(0) is equal to its maximum 
possible value, in which case H,,, = 1. Here the film has a single rapid increase in 
depth (from point b to c) somewhere between B = 0 and in. The film gradually 
increases in dcpth from I9 = 0 a t  a until it  reaches the sudden transition a t  b. After 
the transition the film thins steadily and gradually (from c to a' to  d' )  until B = $X at  
which point it begins to thicken and return to h(0) at  19 = 2n. Two typical examples 
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FIGURE 11. Typical film profiles of a film having a single transition and m = 1 (h(0) = 0.3849) : 
( a )  19* = 0.94; ( b )  0.44. 

of such a film profile are shown in figure 11.  Note also that the profile just described 
is very reminiscent of the cascading phenomena observed in the experiments 
conducted by White (1956), White & Higgins (1958) and Deiber & Cerro (1976), 
including the presence of recirculating zones, which have already been discussed. In 
addition, from a breakdown in their numerical calculations, Deiber & Cerro identified 
a region in which they believed discontinuous or sudden-transition solutions existed. 
However, their numerical scheme did not allow them to do computations in this 
region and they were forced to speculate about the character of these solutions. It is 
believed that the present transition solutions are of the class that Deiber & Cerro 
suspected were present. 
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Returning now to the thought experiment discussed above, as the film volume is 
increased, ultimately a maximum film volume is attained for this configuration when 
the transition point reaches 8 = 0. For m = 1. this maximum volume is found to 
equal 3.93SR2. Note that as the transition point approaches t9 = 0 the film thickness 
is unbounded, but integrable and so a finite maximum volume is predicted (this is 
easily verified by Considering the solutions to ( 2 2 )  for t9 near 0) .  However, what would 
occur for even greater volumes 2 Perhaps larger film volumes cannot be supported by 
the drag on the cylinder wall and only a large slightly perturbed puddle at the 
bottom of the cylinder can occur. Clearly the above thought experiment is pure 
speculation, but it is nonetheless amusing to consider the possibilities from the 
configurations that we have identified. 

Note that other possibilities exist that are equally good candidates for explaining 
what happens when the fluid volume exceeds 2.56SR2 (the maximum volume for a 
gradually varied continuous film). One alternative to what was just described would 
be to have two transition points which would initially be near 8 =+x and 
symmetrically located (examples of film configurations of this type have already 
been shown, see figure 7) .  Increasing the volume might move the two transition 
points towards 8 = 0 and 8 = x, but h(0) would again remain fixed a t  its previous 
maximum (h(0) = 0.3849 when m = 1). Ultimately a maximum film volume for this 
configuration would also be attained when the transition points reach 8 = 0 and X. 
For m = 1 and h(0) = 0.3849 we find that this limiting volume is equal to 5.3SR2. 

Now consider partial films trapped on the rising side of the rotating cylinder (e.g. 
figure l b ) .  For these cases we also find a maximum possible volume which occurs 
when the partial film extends from 8 = 0 to X. For m = 1 this maximum volume is 
easily shown to be 5.24622'. Films of this type might be formed by injecting the fluid 
on the rising side of the cylinder a t  say 8 = during rotation. Note, however, that 
partial films of this type and continuous films are both possible for a mutual range 
of volumes (e.g. form = 1 partial films and gradually varied continuous films coexist 
as possible solutions for volumcs < 2.56SR'). Therefore the occurrence of one film 
configuration or another cannot be deduced from volume arguments alone. 
Nonetheless, considering the film volume suggests a number of possibilities and in 
some cases rules out  the occurrence of some configurations. For example, for volumes 
greater than 2.56SR2 it is clear that  a gradually varied continuous film is not 
possible. 

It is also worth mentioning that there are other possible film configurations 
somewhat different from those already discussed which have interesting features of 
their own. For example, consider the film profile h(8)  generated by the path shown 
by the arrows in figure 12. Here the film steadily thickens as 8 increases (proceeding 
from a to b)  and becomes unbounded as t9 approaches x a t  point b. This may describe 
the tendency of the fluid to drip from the top of the cylinder if the fluid volume is 
increased any further, in which ease the rotating cylinder is unable to support the 
film and we have the onset of cascading or dripping. Although the physical 
interpretation for the unbounded film thickness a t  t9 = x may be a little far-fetched, 
without some kind of explanation for this situation, one would generally discard this 
film Configuration as a possible steady-state shape. 

In conclusion, we found a number of interesting and amusing film configurations 
and have for the first time precisely identified transition film solutions. The obvious 
future direction is to determine when the various cases ran occur. We have certainly 
not attempted to explore all of the possible cases in detail, but we have simply 
attempted to illustrate some of the possibilities. At this point there is probably little 
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FIGURE 12. Locus of points h(0) describing a gradually varying film which has h(0) equal to its 
maximum value and becomes unbounded at 0 = R (see text for discussion). 

practical value in exploring any particular case thoroughly until it can be determined 
when, if a t  all, such a configuration occurs. The experiments by White & Higgins 
(1958) and White (1956) provide a good starting point for future work. Those 
experiments indicate that, for a fixed volume, a puddle exists at low rotation rates. 
As the rotation rate is increased the film exhibits cascading behaviour (similar to 
figure 11) and at still higher rotation rates eventually the film becomes a gradually 
varied continuous film or rimming film. Our own experiments have verified these 
general features. From the present work and the multiplicity of solutions found it is 
not too surprising that the film also displays interesting hysteresis behaviour as the 
rotation rate is subsequently changed. 
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